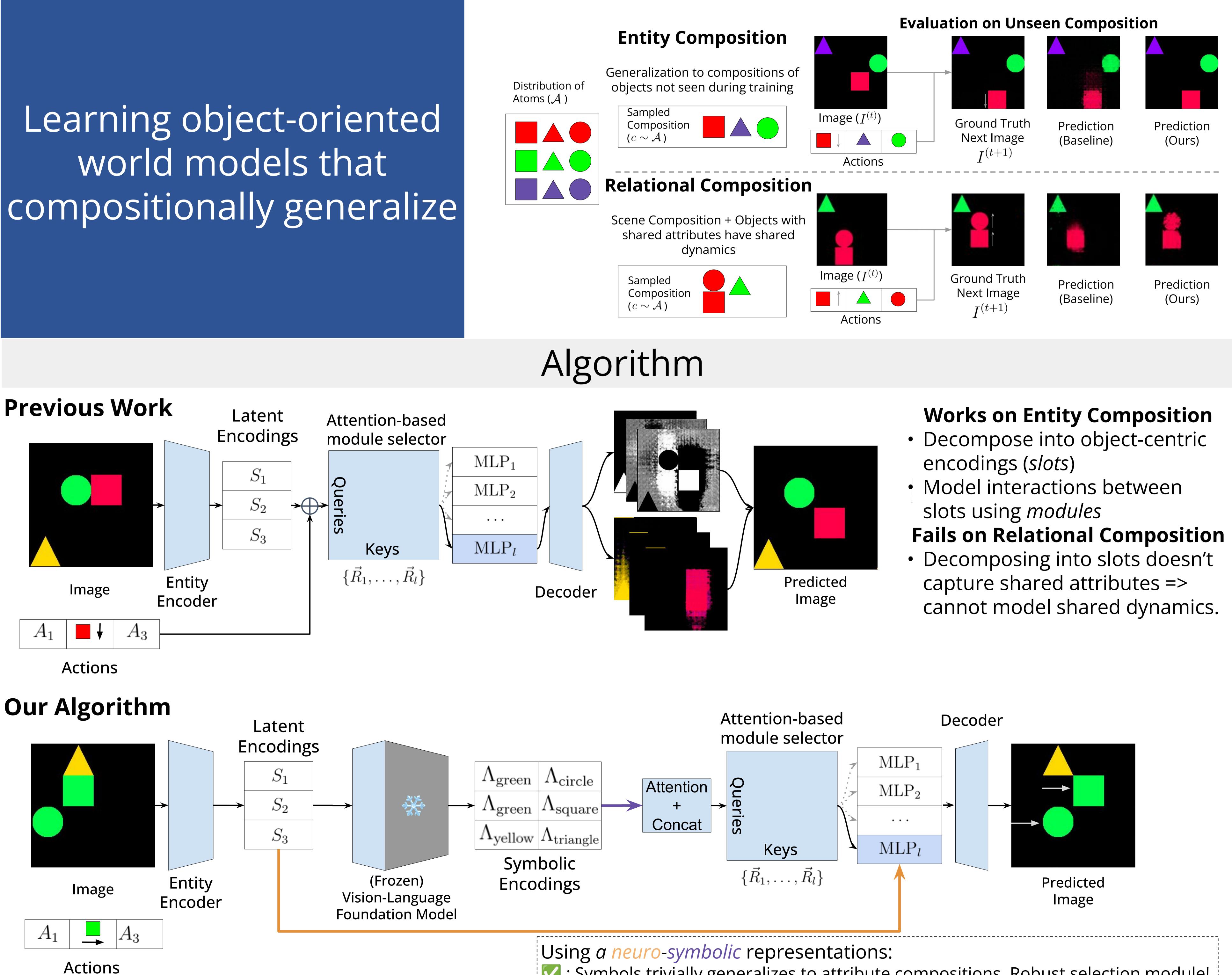
COSMOS: Neurosymbolic Grounding for Compositional World Modeling

Atharva Sehgal¹, Arya Grayeli¹, Jennifer J Sun², Swarat Chaudhuri¹ ¹UT Austin ²Caltech

Problem

Learning object-oriented world models that



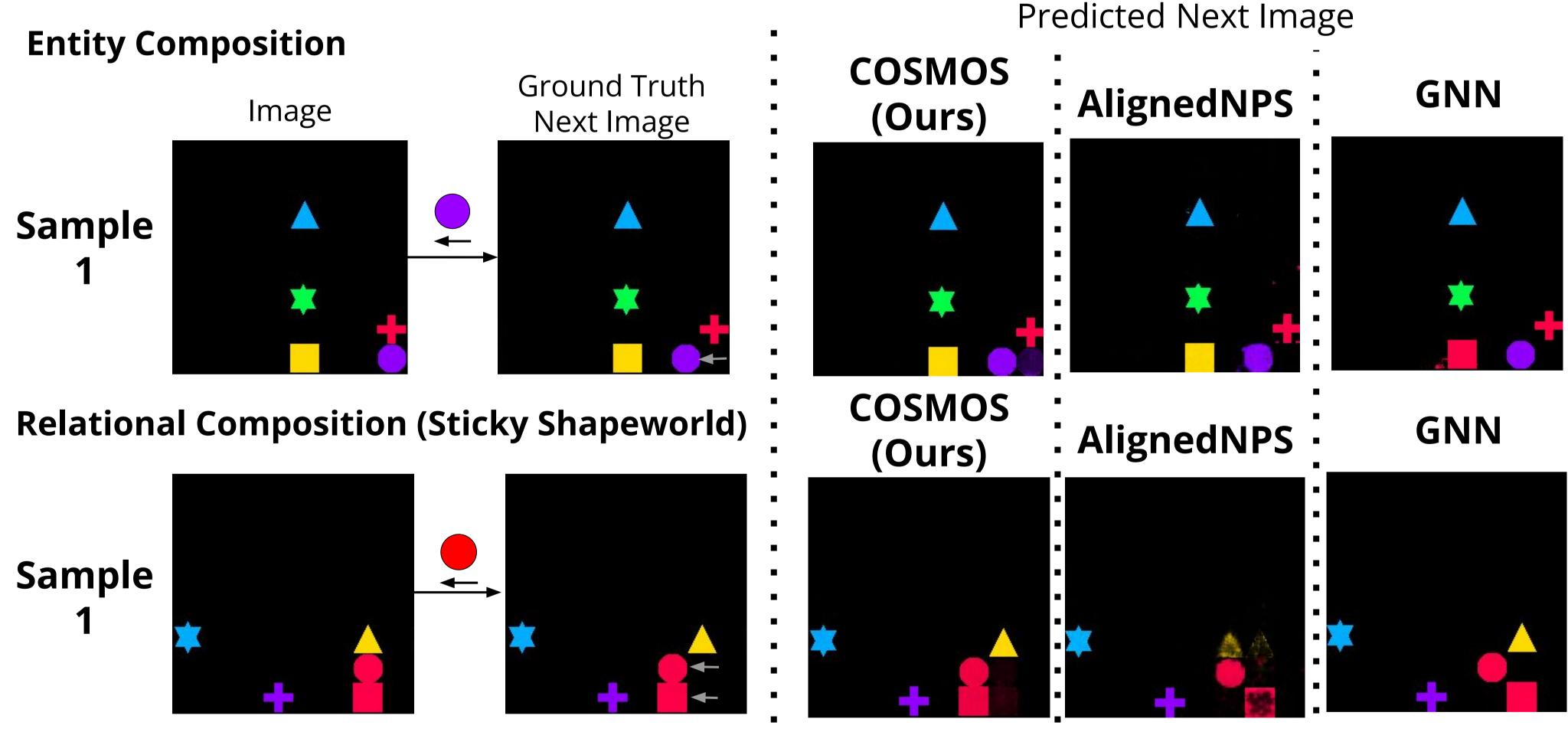
Types of Compositions

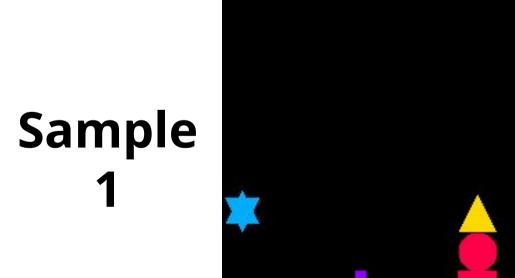
🔽 : Symbols trivially generalizes to attribute compositions. Robust selection module! 🗹 : Neural encodings learn very expressive features. Good image reconstructions!

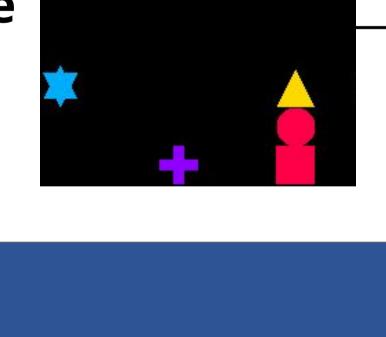
Prediction (Ours) Prediction (Ours)

Takeaways:

- Relational Composition more challenging than En Composition.
- Small performance degradation from 3 object to 5 objects.
- Cosmos achieves best ne state reconstruction (MS
- Cosmos auto-encoder reconstruction (AE-MSE) is consistently good.
- Eq-MRR is misleading Accurate MRR requires consistently good AE-MSE







- compositionality
- representations

Results

	Dataset	Model	3 objects			5 objects		
tity			$\mathbf{MSE}\downarrow$	AE-MSE \downarrow	Eq.MRR †	$\mathbf{MSE}\downarrow$	AE-MSE \downarrow	Eq.MRR †
-	RC	Cosmos	4.23E-03	4.90E-04	1.20E-01	4.15E-03	1.68E-03	3.67E-01
	(Sticky)	ALIGNEDNPS	1.14E-02	7.72E-03	8.01E-02	6.07E-03	2.47E-03	3.62E-01
		GNN	7.94E-03	5.11E-03	6.03E-04	6.21E-03	2.73E-03	5.30E-04
cts	RC	Соѕмоѕ	4.60E-03	4.33E-04	1.04E-01	5.53E-03	1.86E-03	2.86E-01
	(Team)	ALIGNEDNPS	1.24E-02	8.36E-03	1.75E-01	9.64E-03	3.12E-03	2.93E-01
		Gnn	8.92E-03	3.82E-03	7.16E-04	7.01E-03	1.62E-03	5.46E-04
· †	EC	Соѕмоѕ	7.66E-04	6.34E-05	2.99E-01	4.08E-04	2.92E-06	3.03E-01
(t		ALIGNEDNPS	3.51E-03	2.69E-03	2.97E-01	2.45E-03	1.22E-03	3.19E-01
E).		Gnn	9.89E-03	1.03E-02	5.50E-01	1.20E-02	1.28E-02	5.25E-01

Table 1: Evaluation results on the 2D block pushing domain for entity composition (EC) and relational composition (RC) averaged across three seeds. We report next-state reconstruction error (MSE), autoencoder reconstruction error (AE-MSE), and the equivariant mean reciprocal rank (Eq.MRR) for three transition models: our model (COSMOS), an improved version of Goyal et al. (2021) (ALIGNEDNPS), and a reimplementation of Zhao et al. (2022) (GNN). Our model (COSMOS) achieves best next-state reconstructions for all datasets.

Takeaways

Explicit symbolic knowledge helps with

Extend, rather than replace, deep

Foundation models over language (and code) give symbols for free.