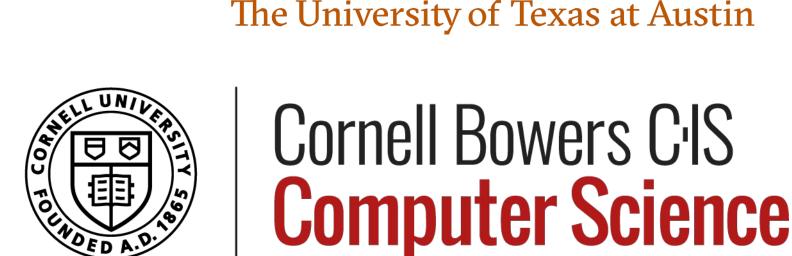
Escher: Self-Evolving Visual Concept Library using Vision Language Critics

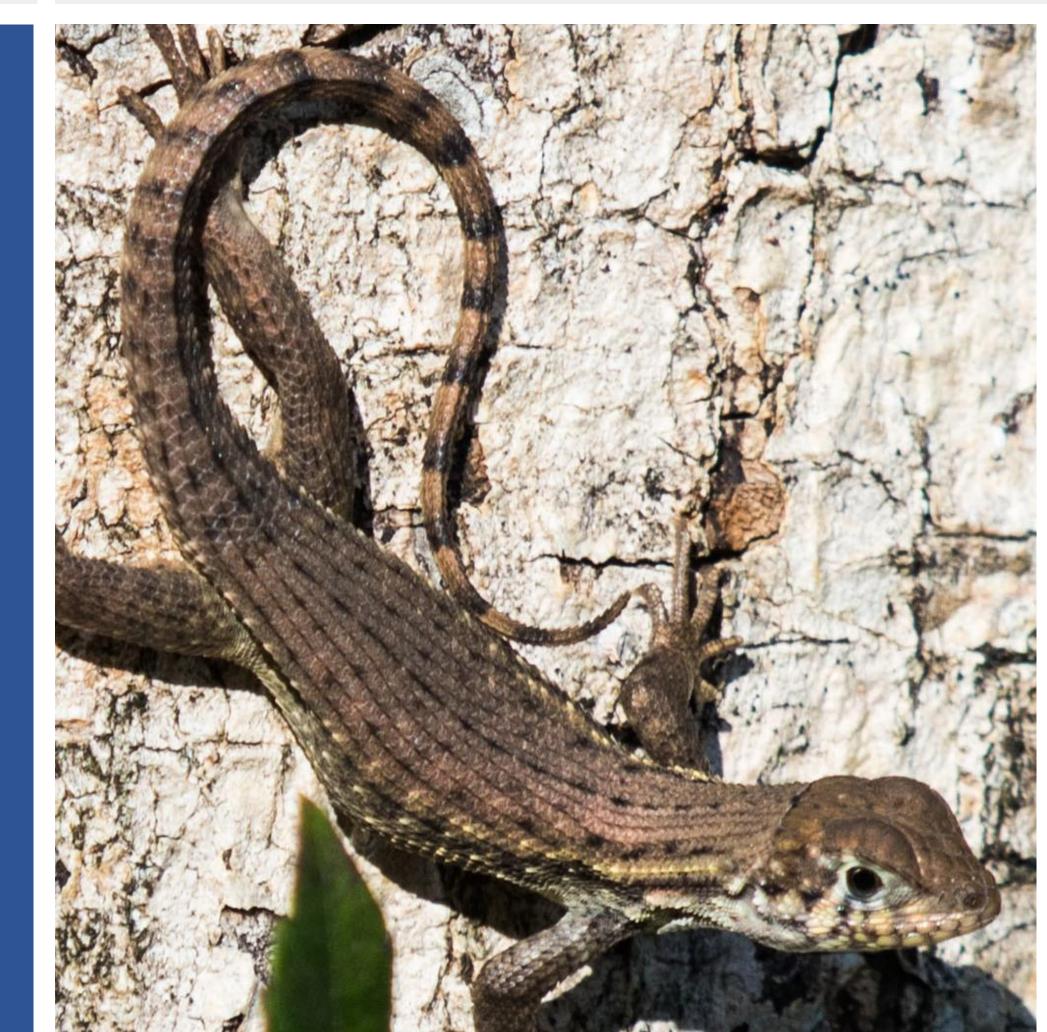
Atharva Sehgal¹, Patrick Yuan², Ziniu Hu³, Yisong Yue³, Jennifer Sun², Swarat Chaudhuri¹ UT Austin ²Cornell University ³Caltech



Caltech

Problem

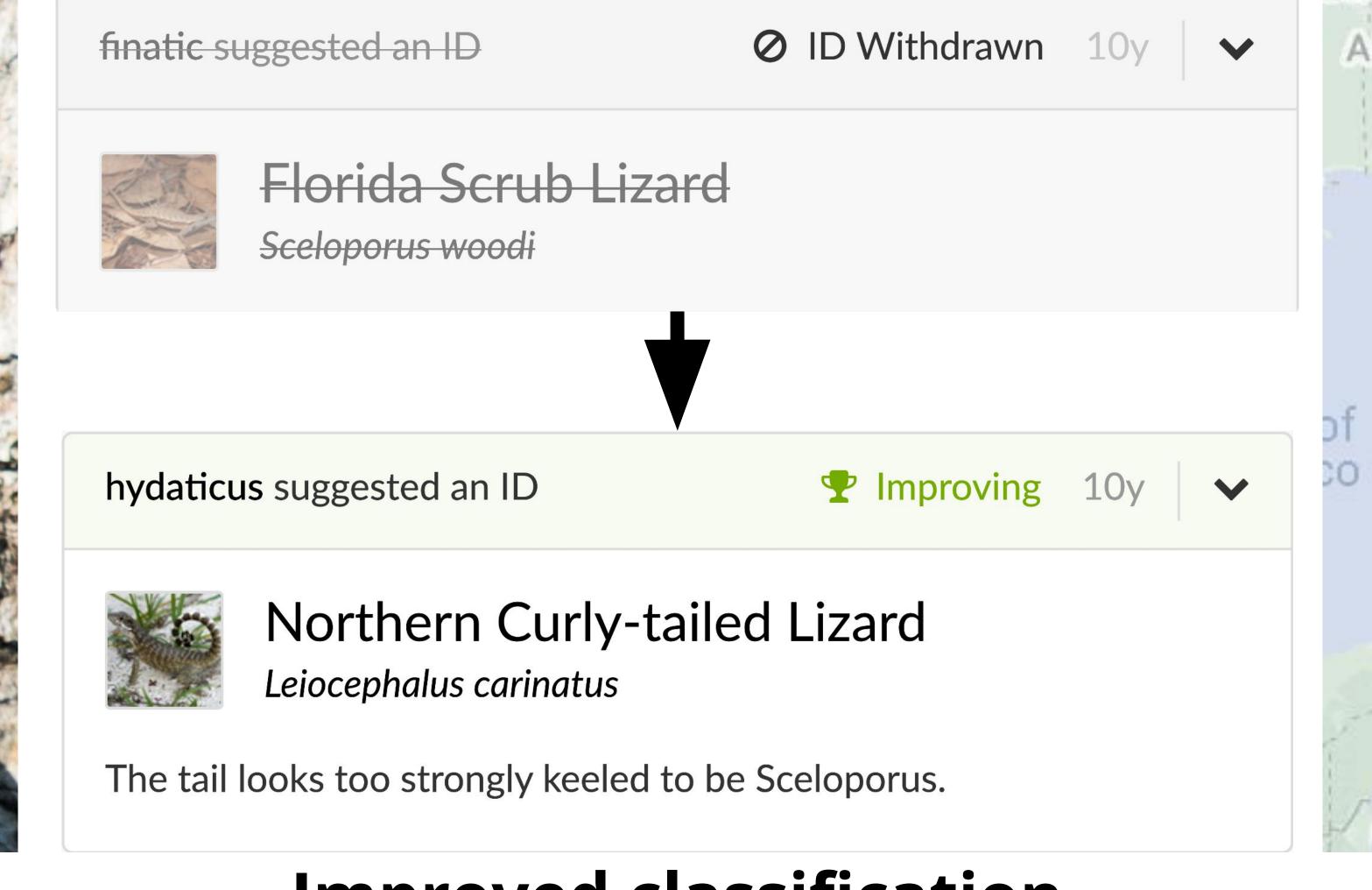
Automatically learn natural language concepts for fine-grained visual reasoning



Geotagged Image

Visual Concepts "in the wild"

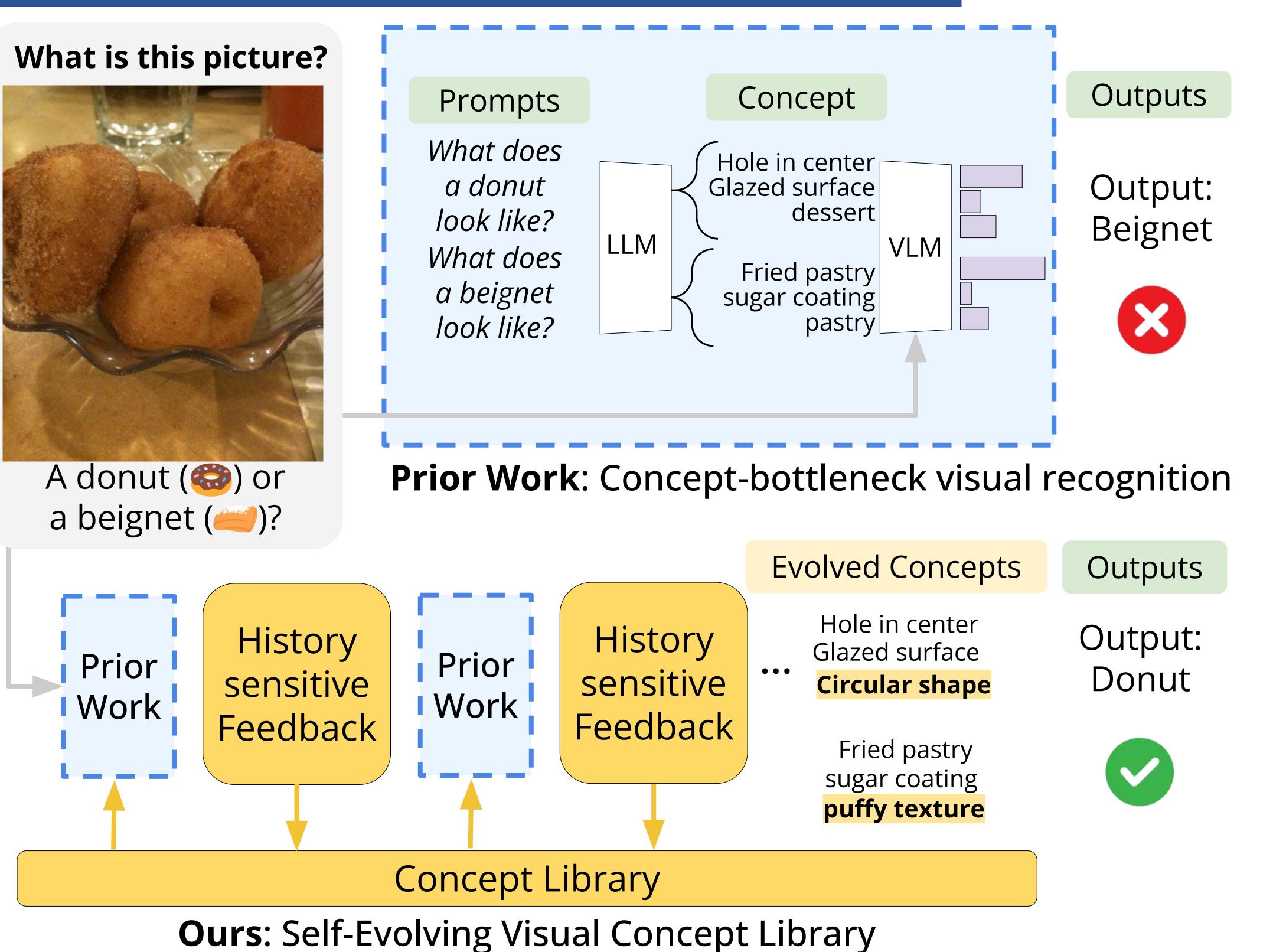
Initial classification



Improved classification with reasoning

ALABAMA GEORGIA Havan uba S Do

Geotagged Sightings



Key Insight: The concept library simultaneously bootstraps the VLM inputs and LLM inputs.

The current descriptors for **slaty backed gull** are: {cls1_concepts}.
The current descriptors for **california gull** are: {cls2_concepts}.

```json
"reasoning": [
"Slaty-backed gulls have a darker, slate-gray
back and wings, whereas California gulls have a
lighter gray back and wings, making the back
coloration a key distinguishing feature.",
"Slaty-backed gulls exhibit prominent white
'mirrors' on their primary feathers, which are
larger and more distinct compared to those of the

California gull.", ...
],
"features": [
"Slate-gray back

"Slate-gray back and wings",
"Large white mirrors on primary feathers",
..;

# Results Learned with Escher improves

- Concept libraries learned with Escher improves state-of-the-art concept bottleneck model performance in zero-shot, few-shot, and fine-tuned image classification.
- History-sensitive feedback is integral to Escher's performance.
- Escher's concept libraries help across many backbone models.

ViT-B/16	<b>CLIP</b>	LM4CV	LM4CV	CbD	CbD
			+ESCHER		+ESCHER
CIFAR-100	63.20	81.35	81.72	67.70	69.90
CUB-200-2011	57.06	70.90	77.17	56.16	56.16
Food101	87.24	92.00	92.20	88.51	89.19
<b>NABirds</b>	44.56	66.69	<b>68.71</b>	45.25	45.25
Stanford Cars	61.86	80.87	81.82	65.96	66.34

Table 5. Top-1 accuracy for evolving ESCHER with a weaker LLM (Llama-3.3-70B-4bit) and visual critic (ViT-B/16). ESCHER consistently improves the performance of LM4CV and CbD across datasets.

 Dataset
 CbD
 CbD+Escher

 CIFAR-100
 76.20
 77.80

 CUB-200-2011
 62.00
 63.33

 Food101
 93.11
 93.58

 NABirds
 53.61
 54.30

 Oxford Flowers
 79.41
 81.37

 Stanford Cars
 75.65
 77.14

Table 3. Performance for Classify by Descriptions (CbD) [15] and CbD evolved with ESCHER on multiple fine-grained classification datasets in a zero-shot learning setting. CbD+ESCHER improves upon CbD's performance in all datasets.

Dataset	LM4CV	LM4CV + Many Concepts	LM4CV + Escher
CIFAR-100	84.48	86.91	89.63
CUB-200-2011	63.26	66.09	83.17
Food101	94.77	94.77	94.90
NABirds	76.58	76.28	<b>78.21</b>
Oxford Flowers	94.80	94.51	96.86
Oxford IIIT Pets	92.50	92.02	92.86
Stanford Cars	86.84	86.84	93.76

Table 4. Top-1 accuracy of an ablation of ESCHER's library learning component. For LM4CV, we replace the concepts learned with library learning with an equal number of concepts sampled from an LLM. We find that concepts evolved with ESCHER still outperform naively sampling more concepts – suggesting that feedback from a VLM critic is essential for LM4CV+ESCHER's performance.

# This is a Male Ring-necked pheasant. With no iterations, the baseline Confuses this for an Female lower lower because:

While the **true class** has lower aggregate activation because:

the baseline correctly predicts this to be a **Male Ring-necked pheasant** because:

Average 0.2877

distinct white ring around the neck 0.2955

After iteration with ESCHER,



	Average	0.2869		
	medium-sized bird		0.3032	disti
	shorter tail feathers compared to the male ring-necked pheasant	0.2	972	
	brown or tan feathers with black and white markings	0.2915	5	
	long, pointed tail feathers	0.2833		
· K				

			prieasant because.	
69	Average	0.2860	Average	
0.3032	distinct white ring around the neck	0.2955	distinct white ring around the neck	
0.2972	long, pointed tail feathers	0.2921	metallic green head and neck	
2915	red face and wattles	0.2899	teetering walking motion	
	yellow or orange legs and feet	0.2899	long, pointed tail feathers	

## Takeaways

- Concept libraries can provide the foundations for higher-level perceptual reasoning.
- Feedback mechanisms are a powerful tool for facilitating multi-modal knowledge retrieval.
- Perceptual reasoning necessitates good vision specialists.